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A hybrid multiscale method is developed for simulating micro- and nano-scale fluid
flows. The continuum Navier–Stokes equation is used in one flow region and atomistic
molecular dynamics in another. The spatial coupling between continuum equations
and molecular dynamics is achieved through constrained dynamics in an overlap
region. The proposed multiscale method is used to simulate sudden-start Couette
flow and channel flow with nano-scale rough walls, showing quantitative agreement
with results from analytical solutions and full molecular dynamics simulations for
different parameter regimes. Potential applications of the proposed multiscale method
are discussed.

1. Introduction
Continuity is the most fundamental assumption in macroscopic fluid mechanics

which is governed by the Navier–Stokes (NS) equations (see, for example, Batchelor
1967). This assumption breaks down as the spatial scale of flows approaches the
molecular mean free path (Ho & Tai 1998). The discreteness of matter is important
in a growing number of applications, such as micro-electro-mechanical systems
(MEMS), that involve flow in micrometer- and nanometer-scale channels. Continuum
approaches also fail to describe macroscopic flows where the continuum equations
have essential singularities, as in the moving contact-line problem (Huh & Scriven
1971; Dussan 1979; Dussan & Dave 1986).

Atomistic descriptions, such as molecular dynamics (MD) simulations, are capable
of modeling nano-fluid and singular flows (Koplik & Banavar 1995a, b; Thompson &
Troian 1997; Koplik, Banavar & Willemsen 1988; Thompson & Robbins 1989).
However, it is unrealistic to use full MD simulations to study flows at micro-scales
because of memory and computational time limitations. Moreover, in most cases the
breakdown of the continuum description is confined to limited domains, such as fluid–
fluid or fluid–solid interfaces. Hence it is desirable to develop hybrid methods that
combine continuum fluid dynamics and molecular dynamics, using the most efficient
description in each region of space.

Figure 1 shows a general schematic of the geometry of a hybrid scheme. Continuum
equations are solved in regions that are homogeneous and have small velocity
gradients (shaded region). An atomistic description, for example MD simulation,
is used at interfaces or where gradients are large (region with discrete circles). The
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Figure 1. Schematic of the hybrid method. The continuum description is used in the shadowed
region and the atomistic description is used in the dotted region. In C → P, continuum solutions
provide boundary conditions for MD simulations and in P → C atomistic solutions provide
boundary conditions for continuum simulations.

major technical difficulty in constructing such methods lies in coupling these very
different descriptions of fluids at the MD–continuum interface. The two descriptions
in the overlap region are coupled and must be consistent, i.e. the physical quantities,
including density, momentum and energy, and their fluxes, must be continuous. The
boundary conditions needed for the continuum equations can be straightforwardly
obtained by averaging the corresponding quantities from the particle description
over the local region and over time. However, the reverse problem, generating
microscopic particle configurations from known macroscopic quantities such as
density, momentum and energy, is non-trivial and must necessarily be non-unique.
The problem is magnified when there is flux of particles between continuum and
discrete regions. In general, there is also a time coupling issue since the integration
time step for the continuum Navier–Stokes equations is normally several orders of
magnitude larger than that in the MD region.

Several coupling schemes have been developed. O’Connell & Thompson (1995)
noted that it was important to have a finite overlap region to avoid sharp density
oscillations and allow the two solutions to relax before they are coupled together.
They used a relaxation method to force the average MD velocity in a region to follow
the continuum solution. This introduces an arbitrary relaxation rate, but the more
important limitation of their approach is that it does not include mass flux at the
MD–continuum interface. This limited the geometries they could consider, but their
approach successfully reproduced a set of one-dimensional flows.

Hadjiconstantinou & Patera (1997) developed a Maxwell Demon method for
simulating incompressible flow. Particle velocities are drawn from a Maxwellian
distribution with mean and standard deviation determined by the local continuum
velocity and temperature. A particle reservoir is used to conserve mass flux across
the MD–continuum interface. Periodic boundary conditions are applied to the MD
simulation domain, including the reservoir. This prevents particles from drifting away,
but may introduce spurious correlations, and limits the geometry of the MD region.
Schwarz iteration is used to make the MD and continuum descriptions consistent.
They simulated a steady channel flow with an obstacle (Hadjiconstantinou & Patera
1997) and the moving contact-line problem (Hadjiconstantinou 1999). The results are
fairly consistent with full continuum or full MD simulations.
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More recently Flekkoy, Wagner & Feder (2000) presented a new hybrid method
for isothermal, compressible flow. Their scheme is based on continuity of mass and
momentum fluxes across the MD–continuum interface. Steady Couette flow and
steady Poiseuille flow were simulated to demonstrate the method. However, our
tests of this algorithm indicate that it may become unstable in more complicated
geometries, including the case of channel flow past a rough wall shown in figure 3.

In this paper we introduce a robust hybrid method that builds on these previous
works. The continuum solution is obtained by numerically integrating the Navier–
Stokes equations with boundary conditions that include information from the MD
solution at P → C in figure 1. The MD equations are integrated with a much smaller
time step, and the MD boundary conditions at C → P are obtained using ‘constrained
dynamics’. The MD equations in the interface region are modified to constrain the
mean local particle velocity to equal the instantaneous continuum velocity, rather than
relaxing to it over some time scale (O’Connell & Thompson 1995). The approach is
tested against low-dimensional flows used in previous work, and in two-dimensional
flows where there is flux across the MD–continuum interface.

2. Method
We begin by describing the pure continuum and MD simulations implemented in

this paper. In the MD simulation, the molecular interaction potential is given by a
shifted Lennard–Jones potential

V LJ (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6

−
(

σ

rc

)12

+

(
σ

rc

)6
]
. (2.1)

Here ε is the characteristic binding energy and σ is the characteristic length,
representing the molecular diameter. The interaction is set to zero when molecules
are separated by more than the cut-off length rc = 2.2σ . Molecules have mass m and
the mass density is set to ρ = 0.81mσ −3.

The equations of motion are integrated using the Verlet scheme with time step
�tMD = 0.005τ , where τ ≡ (mσ 2/ε)1/2 is the characteristic time of the Lennard–Jones
potential. A Langevin thermostat with damping rate τ−1 is used to maintain a
constant temperature of 1.1ε/kB , where kB is Boltzmann’s constant (Grest & Kremer
1986). The thermostat is only applied in the z-direction, since it is always normal
to the mean velocity in the two-dimensional flows considered here. In more general
geometries, or to include heat flux, one may apply the thermostat only in the middle
of the overlap region, and only to the deviation from the mean local flow. At the above
temperature and density, the molecules form a Lennard–Jones liquid with dynamic
viscosity µ = 2.14ετσ −3 (O’Connell & Thompson 1995). This viscosity is used in the
continuum equations.

The three-dimensional Navier–Stokes equations and the continuity equation in the
continuum region are written as

∂t u + u · ∇u = − 1

ρ
∇p + ν∇2u, (2.2)

∇ · u = 0, (2.3)

where u is the fluid velocity, p is the pressure and ν = µ/ρ is the kinematic
viscosity. The above equations are solved numerically using the projection method.
Space is discretized with mesh sizes �x =5.21σ , �y = 5.21σ , and �z =4.82σ in the
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corresponding directions. For the two-dimensional flows considered here, there is no
flow in the z-direction and periodic boundary conditions with period �z are applied
to the MD simulations. The grid is illustrated in the enlargement of the overlap
region shown at the right of figure 1. A staggered grid is used (see, for example,
Peyret & Taylor 1983) with pressures defined at the centre of the cell and velocities
in the middle of the sides of the cell. The x- and y-components of the velocity
are defined at points indicated by asterisks and crosses, respectively. For accurate
numerical integration of the continuum equations the time step �tFD must be much
smaller than the characteristic time of flows on the scale of the grid ρ�x�y/µ ∼ 10τ .
The continuum time step must also be larger than the velocity auto-correlation time
tvv in order to minimize the thermal noise introduced by the boundary conditions.
The two requirements place a lower limit on the cell size that is close to the choice
used here. For the situations considered below, tvv ∼ 0.14τ (O’Connell & Thompson
1995), and we use �tFD = 50�tMD = 0.25τ .

In the portion of the overlap region shown in figure 1, the lower boundary of the
continuum cells is at y = y0. The MD solution provides values of the y-component
of the velocity at the crosses along y = y0 and values of the x-component of the
velocity at the asterisks along y = y0 − �y/2. These values are obtained by averaging
the velocities of all MD particles within a volume of dimensions �x × �y × �z

that is centred on the point of interest. The average is also performed over a time
interval �tFD = 0.25τ that is centred on the time for the continuum equations.
This means that information from the continuum simulation is only available for
times �tFD/2 earlier than the current MD time. Note that smaller averaging regions
and times would introduce more thermal noise into the continuum solution, and
that the continuum velocities are already coarse-grained on these length and time
scales.

The continuum and discrete descriptions propagate independently from y0 to the
height where the continuum solution provides boundary conditions for the MD
solution. In future implementations, this region could be used for thermostatting
or matching heat fluxes from the continuum and discrete solutions. However, in
this work we minimized the width of the overlap region by applying the boundary
condition at the second layer of cells, which lies between y1 and y2 in figure 1.

The average continuum velocity uJ in each cell J is obtained by averaging the x-
and y-velocities on the bounding edges. Continuity of the mean velocity requires that
the averaged particle velocity in this cell is equal to uJ :

1

NJ

∑
i

vi = uJ (t), (2.4)

where NJ is the number of particles in cell J . Taking a Lagrangian derivative of
the above equation, we have (1/NJ )

∑
i ẍi =DuJ (t)/Dt . This constraint requires modi-

fication of the usual MD equations of motion: ẍi = Fi/m, where Fi =
(−∂/∂xi)

∑
j �=i V

LJ (rij ). A general solution of the constraint equation can be written as

ẍi =
DuJ (t)

Dt
+ ζi, (2.5)

where ζi is a variable whose sum over the cell is constrained:
∑

i ζi = 0. To determine
the optimum ζi we find the extremum of the time integral of the Lagrangian for
the particles subject to the non-holonomic constraint of (2.4). Following standard
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derivations (e.g. Saletan & Cromer 1971) one finds

ζi =
Fi

m
− 1

NJ m

NJ∑
i=1

Fi

which gives the following modified equation for the ith particle:

ẍi =
Fi

m
− 1

NJ m

NJ∑
i=1

Fi +
DuJ (t)

Dt
. (2.6)

In the simulation, (2.6) is discretized as
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)
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It can be proven that (2.7) is consistent with (2.4) and (2.6) to first order in �tMD.
As mentioned above, the boundary conditions for the continuum equations are only
known for a time ∼�tFD/2 earlier than the MD time. Thus uJ (t+�tMD) is extrapolated
from the continuum fluid velocity at the two nearest time steps.

O’Connell & Thompson (1995) used an equation similar to (2.6), but the final two
terms on the right were multiplied by a number ξ � 1. This combined term then
acts like a force driving the solution toward the constraint after a time of order
�tMD/ξ . O’Connell & Thompson argued that this delay prevented the constraint
from cancelling intrinsic thermal fluctuations on time scales less than tvv . However, an
undesirable consequence is that the particle velocities will always lag the continuum
solution in an accelerating flow. O’Connell & Thompson found that large errors were
introduced when they tried to increase ξ toward unity. This may be because their
algorithm used the same time step for the MD and continuum equations or because
they used a different numerical scheme to integrate the continuum equations.

To prevent molecules from freely drifting away from the MD simulation domain,
an external force is applied to particles between y2 and y3:

Fy = −αp0σ
(y − y2)

1 − (y − y2)/(y3 − y2)
. (2.8)

Here p0 is the average pressure in the MD region, and α is a constant of order one. In
the following we use y3 − y2 = �y and α = 1, but the hybrid solution is not sensitive
to factor of 2 changes in either parameter. The key constraints are that Fy confine
particles while minimizing density oscillations (O’Connell & Thompson 1995). The
value of y3 − y2 must also be big enough to allow new particles to be introduced.
The above constrained dynamics algorithm is used to match the mean velocity in the
x-direction to the continuum solution for y2 < y < y3. The y-component of particle
velocities is coupled to the heat bath for y2 < y < y3 to prevent overheating by the
action of Fy .

To simulate mass flux across the MD–continuum interface, we change the number
of particles in each cell by the net flux in an interval �tFD,

n′ = −Aρuy�tFD/m, (2.9)

where A is the area of the cell perpendicular to the interface. If n′ is negative, the n′

particles closest to y3 are removed. If n′ is positive, particles are inserted at regular
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Figure 2. Velocity profiles at different times in sudden-start Couette flow. Lines show the
solution of the Navier–Stokes equations averaged over the indicated time intervals. Hybrid
results in the MD and continuum regions are shown by asterisks and squares, respectively.
Hybrid results were averaged over ten independent runs to reduce thermal fluctuations.

intervals over the following �tFD at positions near y3 and randomly distributed along
the interface. Since only a whole particle can be added or removed, the nearest
integer is taken and the remaining particle fraction is included at the next time
step. It should be noted that although the above steps are only illustrated along the
y-direction, multi-dimensional problems can be handled in the same way.

3. Results
We first consider an example of sudden-start Couette flow that is similar to the

test case used by O’Connell & Thompson (1995). The fluid is confined between two
parallel walls at y = 0 and 52.1σ . The upper region y > 15.6σ is described by the
continuum NS equations and the bottom region y < 31.3σ contains discrete Lennard–
Jones atoms. The overlap region is 3�y = 15.6σ wide. Periodic boundary conditions
with period 52.1σ are applied in the x-direction. No-slip boundary conditions are
imposed at the top wall, and the atomistic description of the bottom wall is chosen to
produce a no-slip condition. As in O’Connell & Thompson (1995), the bottom wall
consists of two (111) planes of a face-centred cubic lattice formed by molecules with
the same density as the liquid. The interactions between wall and fluid molecules are
described by a shifted Lennard–Jones potential with a characteristic energy εwf = 0.6ε

and length scale σwf = σ .
Initially, the mean fluid velocity is zero everywhere. At t = 0, the upper wall begins

to move at a constant velocity U = σ/τ , while the bottom wall is kept still. The
analytical solution of the NS equations for these conditions was calculated assuming
no-slip boundary conditions. The results were then averaged over the time intervals
indicated in figure 2. At early times, only the upper region of the fluid feels the drag
from the wall. At the latest times, the steady-state linear Couette profile is observed.

Symbols in figure 2 show the hybrid solution for the same time intervals. In this
first test of our approach it is important to minimize statistical errors so that any
systematic errors are revealed. Statistical errors are most significant over the short
averaging times used at the earliest stages of flow. This noise could be reduced by
increasing the thickness of the cell from the relatively small value of �z = 4.81σ .
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Figure 3. Schematic of the simulation of the channel flow with rough bottom wall
by the hybrid method.

Instead we ran ten realizations of the same system in parallel on a linux cluster and
averaged the results to obtain the points in figure 2. The excellent agreement of the
velocity profiles from the hybrid and continuum solutions in figure 2 demonstrates
that the hybrid method provides a good description of momentum coupling at the
MD–continuum interface. Note also that the discrete and continuum portions of the
hybrid solution track closely in the overlap region.

To test the method on a system with particle flux at the MD–continuum interface,
we examined channel flow past the rough wall shown in figure 3. The rough bottom
wall is modelled by two (111) planes with additional square bulges of side length 5.21σ .
Since the problem is periodic, only the single period demarcated by the two vertical
dotted lines in figure 3 is actually simulated. The simulation domain in the (x, y)-
plane is 46.9σ × 46.9σ . As above, the hybrid simulation uses continuum equations
for y > 15.6σ and MD simulations for y < 31.3σ . The continuum region is divided
into nx × ny = 9 × 6 cells for numerical calculations. The MD region is also divided
into 9×6 cells to obtain averaged velocities. Full MD and full continuum simulations
with finer grids of 36 × 36 cells were performed for the same geometry to provide
bases for comparison. The continuum simulation requires boundary conditions at the
wall. Given the success of the no-slip condition for sudden-start Couette flow with
a flat wall, we have assumed the no-slip velocity condition applies along the entire
surface of the rough wall.

As above, the upper wall was translated at U = σ/τ . Although this velocity is quite
fast compared to typical experiments (∼100 m s−1), previous simulations show that the
response remains Newtonian and the Reynolds number is small in systems of the size
used here (Thompson & Troian 1997; Koplik & Banavar 1995a). Both hybrid and
MD simulations were run for 4000τ to achieve a steady-state flow. They were then
averaged over an additional 4000τ and over ten (MD) or twenty (hybrid) independent
runs made in parallel. Statistical variations between individual MD simulations are
constant over the simulation volume. They are equivalent to variations between runs
in the MD portion of hybrid simulations, while variations in the continuum portion
of hybrid simulations are smaller because there is no thermal noise in these regions.

Figure 4(a) shows that streamlines from the hybrid method and the full MD
simulation are in excellent agreement. This demonstrates that the hybrid method
correctly describes both mass and momentum flux at the MD–continuum interface.
Figure 4(b) compares the streamlines for the hybrid and the pure continuum
simulation. The difference is much larger than that in figure 4(a), implying that
the continuum description, consisting of the Navier–Stokes equations and non-slip
boundary conditions, does not capture the relevant physics. As mentioned earlier, the
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Figure 4. The streamlines for channel flow with a rough bottom wall. The square in the
middle of the bottom wall shows the location of the bulge in the surface. In (a) the solid line
is for the hybrid solution and the dashed line for the full atomistic solution. In (b) the solid
line is for the hybrid solution and the dashed line for the full continuum solution.

parameters in our MD simulation were chosen so that flat walls satisfied the no-slip
boundary condition. However, the complex molecular structure near the bulges seems
to change the local velocity boundary conditions in a way that ultimately affects
the entire flow field. Resolving this discrepancy using the Navier–Stokes equation
with complex and spatially varying slip boundary conditions (Thompson & Troian
1997; Karniadakis & Beskok 2001) is in principle possible. However, the hybrid
method captures these boundary conditions naturally without parameterization. In
fact, it could be used to provide boundary conditions for other continuum simulations.
This approach might be desirable if there were a large separation of time scales
between the MD and continuum solutions.

The flow normal to the overlap region is examined directly in figure 5. Here the
vertical velocity uy is plotted as a function of y for each of the nine columns of bins
along the x-direction. The statistical uncertainties for the hybrid and MD simulations
are roughly 0.003σ/τ . Fluctuations of this order are expected given that thermal
velocities are of order 1 and results are averaged over about 100 particles in each bin
and about 104 velocity auto-correlation times. We conclude that the hybrid and MD
results are in excellent agreement within the statistical fluctuations. Note that there
is significant flux between MD and continuum regions that is positive for some x
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Figure 5. Normalized vertical velocity uy/U as a function of y/H for bins centred on the
indicated values of x/L. Solid and dashed lines are for the hybrid and MD simulations,
respectively. Statistical errors in both are about 0.003σ/τ .

and negative at others. The hybrid method allows this flux to occur in a way that is
statistically equivalent to the full MD solution.

4. Summary and conclusions
We have developed a hybrid numerical method for calculating flows in micro-

or nano-scale geometries. MD simulations are used in interfacial regions where the
discreteness of the fluid is important and the Navier–Stokes equations are solved in
regions where a continuum description is accurate. The two descriptions are coupled
by imposing continuity of fluxes at the boundaries of an overlap region. The mean
particle velocities provide boundary conditions for the NS solution at one side of
the overlap region (P → C in figure 1). A constrained dynamics algorithm forces the
instantaneous mean particle velocity to equal the continuum solution at the other
boundary (C → P in figure 1). Flux across the overlap region is maintained by adding
or removing a number of particles that is consistent with the continuum flux.

Simulations of sudden-start Couette flow and flow with a nano-scale rough
wall compare very well with exact solutions and full MD simulation results. This
demonstrates the potential of our method for addressing complex geometries and
boundary conditions. In particular, our hybrid simulation of nano-scale roughness
reveals a change in boundary conditions on the bump that influences the velocity
field throughout the system.

The computational efficiency of the hybrid code relative to pure MD simulations
is roughly the ratio of the total volume to the portion treated atomistically. The
continuum solution uses coarser time and space discretization than the MD and can
be further speeded by using variable cell sizes. As a result, the computation time is
almost the same as that for an MD simulation of the same size as the MD part of the
hybrid algorithm. The statistical error bars for averages over the same time interval
are actually smaller in the hybrid algorithm because there are no thermal fluctuations
in the continuum regions. In the examples considered here, the MD region occupies
about 50% of the volume and the hybrid method is less than a factor of 2 faster
than an all MD simulation. However, this geometry was chosen precisely because we
wanted to perform all MD simulations to validate the method. The hybrid method
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can be applied to channels that are many times wider without significant increase in
computation, while the MD calculations would scale linearly with system size. We are
currently completing a study of the corner singularity in driven cavity flow where a
full MD simulation would require hundreds of times more particles and computation
than the hybrid method (Nie, Chen & Robbins 2003).

The method described here can be extended straightforwardly to higher dimensions
and in several other ways. One is to the study of multiphase flows where the fluxes
of each species could be controlled using constrained dynamics. It would also be
interesting to include heat flux in both MD and continuum approaches. This would
require knowledge of the temperature dependent-viscosity which could be obtained
in advance, or by monitoring the response of fluid in the overlap regime.

This research was supported by US National Science Foundation (NSF) Grant
CMS-0103408. The simulations were performed on the Johns Hopkins University
cluster computer supported by US NSF Grant CTS-0079674.
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